
Chapter 3. OscillationChapter 3. Oscillation
“Trigonometry is a sine of the times.”

— Anonymous

In Chapters 1 and 2, I carefully worked out an object-oriented structure to make something
move on the screen, using the concept of a vector to represent position, velocity, and
acceleration driven by forces in the environment. I could move straight from here into topics
such as particle systems, steering forces, group behaviors, etc. If I did that, however, I’d skip
an important area of mathematics that you’re going to need: trigonometry, or the
mathematics of triangles, specifically right triangles.

Trigonometry is going to give you a lot of tools. You’ll get to think about angles and angular
velocity and acceleration. Trig will teach you about the sine and cosine functions, which
when used properly can yield a nice ease-in, ease-out wave pattern. It’s going to allow you
to calculate more complex forces in an environment that involves angles, such as a
pendulum swinging or a box sliding down an incline.

So this chapter is a bit of a mishmash. I’ll start with the basics of working with angles in p5.js
and cover many trigonometric topics, tying it all into forces at the end. If I do it well, this will
also pave the way for more sophisticated examples that require trig later in this book.

3.1 Angles3.1 Angles

OK. Before you can do any of this stuff, I need to make sure you understand what it means
to be an angle in p5.js. If you have experience with p5.js, you’ve undoubtedly encountered
this issue while using the rotate() function to rotate and spin objects.

The first order of business is to cover radians and degrees. You’re probably familiar with
the concept of an angle in degrees. A full rotation goes from 0 to 360 degrees. 90 degrees
(a right angle) is 1/4th of 360, shown below as two perpendicular lines.
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Figure 3.1

It’s probably more intuitive for you to think of angles in terms of degrees. For example, the
square in Figure 3.2 is rotated 45 degrees around its center.

Figure 3.2

By default p5.js, however, considers angles to be specified in radians. A radian is a unit of
measurement for angles defined by the ratio of the length of the arc of a circle to the radius of
that circle. One radian is the angle at which that ratio equals one (see Figure 3.3). 180 degrees
= PI radians, 360 degrees = 2*PI radians, 90 degrees = PI/2 radians, etc.

Figure 3.3
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The formula to convert from degrees to radians is:

radians = 2 * PI * (degrees / 360)

Thankfully, if you prefer to think of angles in degrees you can call angleMode(DEGREES).
p5.js also includes a convenience function radians() function to automatically converts
values from degrees to radians as well as the constants PI and TWO_PI for access to these
commonly used numbers (equivalent to 180 and 360 degrees, respectively). Here are two
ways in p5.js to rotate a shape by 60 degrees.

While the above can be useful, for the purposes of this book I‘m going to always assume
radians. In addition, if you are not familiar with how rotation is implemented in p5.js, I would
suggest this transformations tutorial by Gene Kogan (http://genekogan.com/code/p5js-
transformations/) or this video series on transformations in p5.js (see page 0).

What is PI?What is PI?

The mathematical constant pi (or π) is a real number defined as the ratio of a circle’s
circumference (the distance around the perimeter) to its diameter (a straight line that
passes through the circle’s center). It is equal to approximately 3.14159 and can be
accessed in p5 with the built-in variable PI.

Exercise 3.1Exercise 3.1

Rotate a baton-like object (see below) around its center using translate() and
rotate().

let angle = 60;
rotate(radians(angle));

angleMode(DEGREES);
rotate(angle);
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3.2 Angular Motion3.2 Angular Motion

Remember all this stuff?

velocity = velocity + acceleration
position = position + velocity

The stuff we dedicated almost all of Chapters 1 and 2 to? Well, you can apply exactly the same
logic to a rotating object.

angular velocity = angular velocity + angular acceleration
angle = angle + angular velocity

In fact, the above is simpler than what I started with because an angle is a scalar quantity—a
single number, not a vector!

Using the answer from Exercise 3.1 above, let’s say you wanted to rotate a baton in p5.js by
some angle. The code might read:

Adding in the principles of motion, I can then write the following example (the solution to
Exercise 3.1).

Example 3.1: Angular motion using rotate()Example 3.1: Angular motion using rotate()

translate(width/2, height/2);
rotate(angle);
line(-50, 0, 50, 0);
circle(50, 0, 8);
circle(-50, 0, 8);

positionlet angle = 0;

Velocitylet aVelocity = 0;
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The baton starts onscreen with no rotation and then spins faster and faster as the angle of
rotation accelerates.

Exercise 3.x-axisExercise 3.x-axis

Add an interaction to the spinning baton. How can you control the acceleration with
the mouse? Can you introduce the idea of drag, decreasing the angular velocity
over time so that it will always eventually come to rest?

This idea can be incorporated into the Mover class by adding new variables related to
angular motion.

Accelerationlet aAcceleration = 0.001;

function setup() {
createCanvas(640, 360);

}

function draw() {
background(255);

fill(175);
stroke(0);
rectMode(CENTER);
translate(width/2, height/2);
rotate(angle);
line(-50, 0, 50, 0);
circle(50, 0, 8);
circle(-50, 0, 8);

Angular equivalent of velocity.add(acceleration);aVelocity += aAcceleration;

Angular equivalent of position.add(velocity);angle += aVelocity;

}
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And then in update(), position and angle are updated according to the same algorithm!

Of course, for any of this to matter, I also would need to rotate the object when displaying it.
(I'll add drawing a line from the center to the edge of the circle so that rotation is viewabale.
You could also use a shape other than a circle.)

Now, if you were to actually go ahead and run the above code, you wouldn’t see anything
new. This is because the angular acceleration (this.aAcceleration = 0;) is initialized to
zero. For the object to rotate, it needs a non-zero acceleration! Certainly, one option is to
hard-code a number.

class Mover {

constructor(){
this.position = createVector();
this.velocity = createVector();
this.acceleration = createVector();
this.mass = 1.0;

this.angle = 0;
this.aVelocity = 0;
this.aAcceleration = 0;

}

}

update() {

Regular old-fashioned motionthis.velocity.add(this.acceleration);
this.position.add(this.velocity);

Newfangled angular motionthis.aVelocity += this.aAcceleration;
this.angle += this.aVelocity;

this.acceleration.mult(0);
}

display() {
stroke(0);
fill(175, 200);
rectMode(CENTER);

push() and pop() are necessary so that the rotation

of this shape doesn’t affect the rest of our world.

push();

Set the origin at the shape’s position.translate(this.position.x, this.position.y);

Rotate by the angle.rotate(this.angle);

circle(0, 0, this.radius * 2);
line(0, 0, this.radius, 0);
pop();

}
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However, you can produce a more interesting result by dynamically assigning an angular
acceleration according to forces in the environment. Now, I could head far down this road
and research modeling the physics of angular acceleration based on the concepts of torque
(http://en.wikipedia.org/wiki/Torque) and moment of inertia (http://en.wikipedia.org/wiki/
Moment_of_inertia). Nevertheless, this level of simulation is beyond the scope of this book.
(I will cover more about modeling angular acceleration with a pendulum later in this chapter,
as well as look at how other physics libraries realistically models rotational motion in
Chapter 5.)

For now, a quick and dirty solution will do. I can produce reasonable results by calculating
angular acceleration as a function of the object’s acceleration vector. Here’s one such
example:

Yes, this is completely arbitrary. But it does do something. If the object is accelerating to the
right, its angular rotation accelerates in a clockwise direction; acceleration to the left results
in a counterclockwise rotation. Of course, it’s important to think about scale in this case.
The x component of the acceleration vector might be a quantity that’s too large, causing the
object to spin in a way that looks ridiculous or unrealistic. So dividing the x component by
some value, or perhaps constraining the angular velocity to a reasonable range, could really
help. Here’s the entire update() function with these tweaks added.

Example 3.2: Forces with (arbitrary) angular motionExample 3.2: Forces with (arbitrary) angular motion

this.aAcceleration = 0.01;

this.aAcceleration = this.acceleration.x;

update() {

this.velocity.add(this.acceleration);
this.position.add(this.velocity);
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Exercise 3.2Exercise 3.2

Step 1: Create a simulation where objects are shot out of a cannon. Each object
should experience a sudden force when shot (just once) as well as gravity (always
present).

Step 2: Add rotation to the object to model its spin as it is shot from the cannon. How
realistic can you make it look?

3.3 Trigonometry3.3 Trigonometry

I think it may be time. I’ve discussed angles, I’ve spun a baton. It’s time for: sohcahtoa. Yes,
sohcahtoa. This seemingly nonsensical word is actually the foundation for a lot of computer
graphics work. A basic understanding of trigonometry is essential if you want to calculate an
angle, figure out the distance between points, work with circles, arcs, or lines. And sohcahtoa
is a mnemonic device (albeit a somewhat absurd one) for what the trigonometric functions
sine, cosine, and tangent mean.

Figure 3.4

• soh: sine = opposite / hypotenuse

Calculate angular acceleration according to

acceleration’s horizontal direction and magnitude.

this.aAcceleration = this.acceleration.x / 10.0;

this.aVelocity += this.aAcceleration;

Use constrain() to ensure that angular velocity

doesn’t spin out of control.

this.aVelocity = constrain(this.aVelocity,
-0.1, 0.1);

this.angle += this.aVelocity;

this.acceleration.mult(0);
}
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• cah: cosine = adjacent / hypotenuse

• toa: tangent = opposite / adjacent

Take a look at Figure 3.4 again. There’s no
need to memorize it, but make sure you
feel comfortable with it. Draw it again
yourself. Now let’s draw it a slightly
different way (Figure 3.5).

See how a right triangle is created from a
vector? The vector arrow itself is the
hypotenuse and the components of the
vector (x and y) are the sides of the
triangle. The angle is an additional means
for specifying the vector’s direction (or
“heading”).

Because the trigonometric functions establish a relationship between the components of a
vector and its direction + magnitude, they will prove very useful throughout this book. I’ll
begin by looking at an example that requires the tangent function.

3.4 Pointing in the Direction of Movement3.4 Pointing in the Direction of Movement

Let’s go all the way back to Example 1.10, which features a Mover object accelerating
towards the mouse.

You might notice that almost all of the shapes I’ve been drawing so far are circles. This is
convenient for a number of reasons, one of which is that I don’t have to consider the
question of rotation. Rotate a circle and, well, it looks exactly the same. However, there
comes a time in all motion programmers’ lives when they want to draw something on the
screen that points in the direction of movement. Perhaps you are drawing an ant, or a car, or

Figure 3.5
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ifif tangent(a) = b

thenthen a = arctangent(b)

ifif tangent(angle) = velocityy / velocityx

thenthen angle = arctangent(velocityy / velocityx)

a spaceship. And when I say “point in the direction of movement,” what I am really saying is
“rotate according to the velocity vector.” Velocity is a vector, with an x and a y component,
but to rotate in p5.js you need an angles. Let’s draw the trigonometry diagram once more, this
time with an object’s velocity vector (Figure 3.6).

OK. I‘ve stayed the definition of tangent is:

tangent(angle) =
velocityy

velocityx

The problem with the above is that while
velocity is known, the angle of direction is
not. I have to solve for that angle. This is
where a special function known as inverse
tangent comes in, also known to as

arctangent or tan-1. (There is also an inverse
sine and an inverse cosine.)

If the tangent of some value a equals some value b, then the inverse tangent of b equals a.
For example:

See how that is the inverse? The above now allows me to solve for the angle:

Now that I have the formula, let’s see where it should go in the mover’s display() function.
Notice that in p5.js, the function for arctangent is called atan().

Figure 3.6

display() {

Solve for angle by using atan().let angle = atan(this.velocity.y /
this.velocity.x);

stroke(0);
fill(175);
push();
rectMode(CENTER);
translate(this.position.x, this.position.y);

Rotate according to that angle.rotate(angle);
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Now the above code is pretty darn close, and almost works. There is a big problem, though.
Consider the two velocity vectors depicted below.

Figure 3.7

Though superficially similar, the two vectors point in quite different directions—opposite
directions, in fact! However, if I were to apply the formula to solve for the angle to each
vector…

V1 ⇒ angle = atan(3/-4) = atan(-0.75) = -0.6435011 radians = -37 degrees
V2 ⇒ angle = atan(-3/4) = atan(-0.75) = -0.6435011 radians = -37 degrees

…I get the same angle for each vector. This can’t be right for both; the vectors point in
opposite directions! The thing is, this is a pretty common problem in computer graphics.
Rather than using atan() along with a bunch of conditional statements to account for
positive/negative scenarios, p5.js (along with pretty much all programming environments)
has a nice function called atan2() that does it for you.

Example 3.3: Pointing in the direction of motionExample 3.3: Pointing in the direction of motion

rect(0, 0, 30, 10);
pop();

}

display() {

Using atan2() to account for all possible

directions

let angle = atan2(this.velocity.y,
this.velocity.x);
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To simplify this even further, the p5.Vector class itself provides a function called heading(),
which takes care of calling atan2() for you so you can get the 2D direction angle, in radians,
for any p5.Vector.

Exercise 3.3Exercise 3.3

Create a simulation of a vehicle that you can drive around the screen using the arrow
keys: left arrow accelerates the car to the left, right to the right. The car should point
in the direction in which it is currently moving.

3.5 Polar vs. Cartesian Coordinates3.5 Polar vs. Cartesian Coordinates

Any time you display a shape in p5, you have to specify a pixel position, a set of x and y
coordinates. These coordinates are known as Cartesian coordinates, named for René
Descartes, the French mathematician who developed the ideas behind Cartesian space.

Another useful coordinate system known as polar coordinates describes a point in space as
an angle of rotation around the origin and a radius from the origin. Thinking about this in
terms of a vector:

Cartesian coordinate—the x,y components of a vector
Polar coordinate—the magnitude (length) and direction (angle) of a vector

p5.js’s drawing functions, however, don’t understand polar coordinates. Whenever you want
to display something, you have to specify positions as (x,y) Cartesian coordinates. However,
sometimes it is much more convenient to think in polar coordinates when designing. Happily
for you, with trigonometry you can convert back and forth between Polar and Cartesian,
designing with whatever coordinate system you have in mind but always drawing with
Cartesian coordinates.

stroke(0);
fill(175);
push();
rectMode(CENTER);
translate(this.position.x, this.position.y);

Rotate according to that angle.rotate(angle);

rect(0, 0, 30, 10);
pop();

}

The easiest way to do this!let angle = this.velocity.heading();
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Figure 3.8: The Greek letter θ (theta) is often used to denote an angle. Since a polar coordinate is

conventionally referred to as (r, θ), I’ll use theta as a variable name when referring to an angle.

sine(theta) = y/r → y = r * sine(theta)
cosine(theta) = x/r → x = r * cosine(theta)

For example, if r is 75 and theta is 45 degrees (or PI/4 radians), x and y can be computed
as follow. (The functions for sine and cosine in p5.js are sin() and cos(), respectively.
They each take one argument, a number representing an angle.)

This type of conversion can be useful in certain applications. For example, to move a shape
along a circular path using Cartesian coordinates is not so easy. With polar coordinates, on
the other hand, it’s simple: increment the angle!

Here’s how it is done with global variables r and theta.

let r = 75;
let theta = PI / 4;

Converting from polar (r,theta) to Cartesian (x,y)let x = r * cos(theta);
let y = r * sin(theta);
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Example 3.4: Polar to CartesianExample 3.4: Polar to Cartesian

Exercise 3.4Exercise 3.4

Using Example 3.4 as a basis, draw a spiral path. Start in the center and move
outwards. Note that this can be done by only changing one line of code and adding
one line of code!

let r = 75;
let theta = 0;

function setup() {
createCanvas(640, 360);
background(255);

}

function draw() {

Polar coordinates (r,theta) are converted to

Cartesian (x,y) for use in the circle() function.

let x = r * cos(theta);
let y = r * sin(theta);

noStroke();
fill(0);
circle(x + width/2, y + height/2, 16);

theta += 0.01;
}
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Exercise 3.5Exercise 3.5

Simulate the spaceship in the game Asteroids. In case you aren’t familiar with
Asteroids, here is a brief description: A spaceship (represented as a triangle) floats
in two dimensional space. The left arrow key turns the spaceship counterclockwise,
the right arrow key, clockwise. The z key applies a “thrust” force in the direction
the spaceship is pointing.

3.6 Oscillation Amplitude and Period3.6 Oscillation Amplitude and Period

Are you amazed yet? I’ve demonstrated some pretty great uses of tangent (for finding the
angle of a vector) and sine and cosine (for converting from polar to Cartesian coordinates). I
could stop right here and be satisfied. But I’m not going to. This is only the beginning. What
sine and cosine can do for you goes beyond mathematical formulas and right triangles.

Let’s take a look at a graph of the sine function, where y = sine(x).

Chapter 3. Oscillation

15



Figure 3.9: y = sine(x)

You’ll notice that the output of the sine function is a smooth curve alternating between −1 and
1. This type of a behavior is known as oscillation, a periodic movement between two points.
Plucking a guitar string, swinging a pendulum, bouncing on a pogo stick—these are all
examples of oscillating motion.

And so you will happily discover that you can simulate oscillation in a p5.js sketch by
assigning the output of the sine function to an object’s position. Note that this will follow the
same methodology we applied to Perlin noise in the Introduction (see page 0).

Let’s begin with a really basic scenario. I want a circle to oscillate from the left side to the right
side of a p5.js canvas.

This is what is known as simple harmonic motion (or, to be fancier, “the periodic sinusoidal
oscillation of an object”). It’s going to be a simple program to write, but before I get into the
code, I should familiarize you with some of the terminology of oscillation (and waves).

Simple harmonic motion can be expressed as any position (in this case, the x position) as a
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function of time, with the following two elements:

• Amplitude: The distance from the center of motion to either extreme

• Period: The amount of time it takes for one complete cycle of motion

The graph of sine (Figure 3.9) shows that the amplitude is 1 and the period is TWO_PI; the
output of sine never rises above 1 or below -1; and every TWO_PI radians (or 360 degrees)
the wave pattern repeats.

Now, in a p5.js world, what is amplitude and what is period? Amplitude can be measured
rather easily in pixels. In the case of a window 200 pixels wide, I might choose to oscillate
from the center 100 pixels to the right and 100 pixels to the left. Therefore:

Period is the amount of time it takes for one cycle, but what is time in a p5.js sketch? I
mean, certainly I could say I want the circle to oscillate every three seconds. And I could
track the milliseconds—using millis() —in p5.js and come up with an elaborate algorithm
for oscillating an object according to real-world time. But for what I‘m trying to accomplish
here, real-world time doesn’t really matter. The useful measure of time in p5.js is in frames.
The oscillating motion should repeat every 30 frames, or 50 frames, or 1000 frames, etc.

Once I have the amplitude and period, it’s time to write a formula to calculate x as a function
of time, which I‘ve established as the current frame count.

Let’s dissect the formula a bit more and try to understand each component. The first is
probably the easiest. Whatever comes out of the sine function is multiplied by amplitude.
The output of the sine function oscillates between -1 and 1. If you take that value and
multiply it by amplitude then you’ll get the desired result: a value oscillating between
-amplitude and amplitude. (Note: this is also a place where we could use p5.js’s map()
function to map the output of sine to a custom range.)

Now, let’s look at what is inside the sine function:

TWO_PI * frameCount / period

What’s going on here? Let’s start with what you know. I‘ve explained that sine will repeat
every 2*PI radians—i.e. it will start at 0 and repeat at 2*PI, 4*PI, 6*PI, etc. If the period is
120, then I want the oscillating motion to repeat when the frameCount is at 120 frames, 240
frames, 360 frames, etc. frameCount is really the only value changing here; it starts at 0

The amplitude is measured in pixels.let amplitude = 100;

Period is measured in frames (the unit of time for

animation).

let period = 120;

let x = amplitude * sin(TWO_PI * frameCount / period);
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and counts upward. Let’s take a look at what the formula yields as frameCount increases.

frameCount frameCount / period TWO_PI * frameCount / period

0 0 0

60 0.5 PI

120 1 TWO_PI

240 2 2 * TWO_PI (or 4* PI)

etc.

frameCount divided by period tells you how many cycles have been completed—is the wave
halfway through the first cycle? Have two cycles completed? By multiplying that number by
TWO_PI, I get the desired result, since TWO_PI is the number of radians required for sine (or
cosine) to complete one full cycle.

Wrapping this all up, here’s the p5.js example that oscillates the x position of a circle with an
amplitude of 100 pixels and a period of 120 frames.

Example 3.5: Simple Harmonic MotionExample 3.5: Simple Harmonic Motion

It’s also worth mentioning the term frequency: the number of cycles per time unit. Frequency
is equal to 1 divided by period. If the period is 120 frames, then only 1/120th of a cycle is

function setup() {
createCanvas(640, 360);

}

function draw() {
background(255);

let period = 120;
let amplitude = 100;

let x = amplitude * sin(TWO_PI * frameCount / period);

stroke(0);
fill(175);
translate(width/2, height/2);
line(0, 0, x, 0);
circle(x, 0, 20);

}

Calculating horizontal position according to the

formula for simple harmonic motion
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completed in one frame, and so frequency = 1/120. In the above example, I chose to define
the rate of oscillation in terms of period and therefore did not need a variable for frequency.

Exercise 3.6Exercise 3.6

Using the sine function, create a simulation of a weight (sometimes referred to as a
“bob”) that hangs from a spring from the top of the window. Use the map() function
to calculate the vertical position of the bob. Later in this chapter, I’ll demonstrate
how to recreate this same simulation by modeling the forces of a spring according
to Hooke’s law.

3.7 Oscillation with Angular Velocity3.7 Oscillation with Angular Velocity

An understanding of the concepts of oscillation, amplitude, and frequency/period is often
required in the course of simulating real-world behaviors. However, there is a slightly easier
way to rewrite the above example with the same result. Let’s take one more look at the
oscillation formula:

Below I‘ll rewrite it a slightly different way:

If you care about precisely defining the period of oscillation in terms of frames of animation,
you might need the formula the way I first wrote it, but I could just as easily rewrite the
example using the concept of angular velocity (and acceleration) from section 3.2 (see page
4). Assuming:

in draw(), we can simply say:

angle is “some value that increments slowly.”

let x = amplitude * sin(TWO_PI * frameCount / period);

const x = amplitude * sin ( some value that increments slowly );

let angle = 0;
let aVelocity = 0.05;

angle += aVelocity;
let x = amplitude * sin(angle);
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Example 3.6: Simple Harmonic Motion IIExample 3.6: Simple Harmonic Motion II

Just because I’m not referencing it directly doesn’t mean that I’ve eliminated the concept of
period. After all, the greater the angular velocity, the faster the circle will oscillate (therefore
lowering the period). In fact, the number of draw() loops to add up the angular velocity all the
way to TWO_PI is the period or:

period = TWO_PI / angular velocity

Let’s expand this example a bit more and create an Oscillator class. And let’s assume I want
the oscillation to happen along both the x-axis (as above) and the y-axis. To do this, I’ll need
two angles, two angular velocities, and two amplitudes (one for each axis). Another perfect
opportunity for createVector()!

let angle = 0;
let aVelocity = 0.05;

function setup() {
createCanvas(640, 360);

}

function draw() {
background(255);

let amplitude = 100;
let x = amplitude * sin(angle);

Using the concept of angular velocity to

increment an angle variable

angle += aVelocity;

ellipseMode(CENTER);
stroke(0);
fill(175);
translate(width/2, height/2);
line(0, 0, x, 0);
circle(x, 0, 20);

}
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Example 3.7: Oscillator objectsExample 3.7: Oscillator objects

Exercise 3.7Exercise 3.7

Try initializing each Oscillator object with velocities and amplitudes that are not
random to create some sort of regular pattern. Can you make the oscillators appear
to be the legs of an insect-like creature?

Exercise 3.8Exercise 3.8

Incorporate angular acceleration into the Oscillator object.

class Oscillator  {

constructor()  {

Using a p5.Vector to track two angles!this.angle = createVector();
this.velocity = createVector(random(-0.05,

0.05),random(-0.05, 0.05));

this.amplitude = createVector(random(width/2), random(height/2));

}

oscillate()  {
this.angle.add(this.velocity);

}

display()  {

Oscillating on the x-axislet x = sin(this.angle.x) *
this.amplitude.x;

Oscillating on the y-axislet y = sin(this.angle.y) *
this.amplitude.y;

push();
translate(width/2, height/2);
stroke(0);
fill(175);

Drawing the Oscillator as a line connecting a

circle

line(0, 0, x, y);
circle(x, y, 16);
pop();

}
}

Random velocities and amplitudes
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3.8 Waves3.8 Waves

If you’re saying to yourself, “Um, this is all great and everything, but what I really want is to
draw a wave,” well, then, the time has come. When you oscillate a single circle up and down
according to the sine function, what you are doing is equivalent to simulating a single point
along the x-axis of a wave pattern. With a little panache and a for loop, you can place a whole
bunch of these oscillating circles next to each other.

This wavy pattern could be used in the design of the body or appendages of a creature, as
well as to simulate a soft surface (such as water).

Here, the same questions of amplitude (height of pattern) and period apply. Instead of period
referring to time, however, since the example renders the full wave, I‘ll refer to period as the
width (in pixels) of a full wave cycle. And just as with simple oscillation, you have the option of
computing the wave pattern according to a precise period or following the model of angular
velocity.

Let’s go with the simpler case, angular velocity. I know I need to start with an angle, an
angular velocity, and an amplitude:

Then I’m going to loop through all of the x values for each point on the wave. I’ll pick every 24
pixels for now and follow these three steps:

1. Calculate the y position according to amplitude and sine of the angle.

2. Draw a circle at the (x,y) position.

3. Increment the angle according to angular velocity.

let angle = 0;
let angleVel = 0.2;
let amplitude = 100;

for (let x = 0; x <= width; x += 24) {
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Here are the results with different values for angleVel:

Although I’m not precisely computing the period of the wave, the higher the angular
velocity, the shorter the period. It’s also worth noting that as the period decreases, it
becomes more difficult to make out the wave itself since the distance between the
individual points increases. One option to improve the visual quality is to use beginShape()
and endShape() to connect the points with a line.

1) Calculate the y position according to amplitude

and sine of the angle.

let y = amplitude * sin(angle);

2) Draw a circle at the (x,y) position.circle(x, y + height/2, 48);

3) Increment the angle according to angular

velocity.

angle += angleVel;
}

angleVel = 0.05 angleVel = 0.2 angleVel = 0.4
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Example 3.8: Static wave drawn as a continuous lineExample 3.8: Static wave drawn as a continuous line

You may have noticed that the above example is static. The wave never changes, never
undulates. This additional step is a bit tricky. Your first instinct might be to say: “Hey, no
problem, I’ll just let theta be a global variable and increment it from one cycle through draw()
to another.”

While it’s a nice thought, it doesn’t work. If you look at the wave, the righthand edge doesn’t
match the lefthand; where it ends in one cycle of draw() can’t be where it starts in the next.
Instead, what you need to do is have a variable dedicated entirely to tracking the starting
angle value of the wave. This angle (which I’ll call startAngle) increments with its own
angular velocity.

let angle = 0;
let angleVel = 0.2;
let amplitude = 100;

function setup(){
createCanvas(640, 360);
background(255);

stroke(0);
strokeWeight(2);
noFill();

beginShape();
for (let x = 0; x <= width; x += 5) {

Here’s an example of using the map() function

instead.

let y = map(sin(angle), -1, 1, 0, height);

With beginShape() and endShape(), you call

vertex() to set all the vertices of your shape.

vertex(x, y);
angle += angleVel;

}
endShape();

}
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Example 3.9: The WaveExample 3.9: The Wave

Exercise 3.9Exercise 3.9

Try using the Perlin noise function instead of sine or cosine with the above
example.

let startAngle = 0;
let angleVel = 0.1;

function setup() {
createCanvas(640, 360);

}

function draw() {
background(255);

In order to move the wave, we start at a different

theta value each frame.

let angle = startAngle;
startAngle += 0.02;

for (let x = 0; x <= width; x += 24) {
const y = map(sin(angle), -1, 1, 0, height);
stroke(0);
fill(0, 50);
circle(x, y, 48);
angle += angleVel;

}
}
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Exercise 3.10Exercise 3.10

Encapsulate the above examples into a Wave class and create a sketch that displays
two waves (with different amplitudes/periods) as in the screenshot below. Move
beyond plain circles and lines and try visualizing the wave in a more creative way.

Exercise 3.11Exercise 3.11

More complex waves can be produced by the summing multiple waves together.
Create a sketch that implements this, as in the screenshot below.

3.9 Trigonometry and Forces: The Pendulum3.9 Trigonometry and Forces: The Pendulum

Do you miss Newton’s laws of motion? I know I sure do. Well, lucky for you, it’s time to bring it
all back home. After all, it’s been nice learning about triangles and tangents and waves, but
really, the core of this book is about simulating the physics of moving bodies. Let’s take a look
at how trigonometry can help with this pursuit.
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A pendulum is a bob suspended from a pivot. A real-world pendulum would live in a 3D
space, but I’m going to look at a simpler scenario, a pendulum in a 2D space—a p5 canvas
(see Figure 3.10).

In Chapter 2, I discussed how a force (such as the force of gravity in Figure 3.11) causes an
object to accelerate. F = M * A or A = F / M. In this case, however, the pendulum bob
doesn’t fall to the ground because it is attached by an arm to the pivot point. And so, in
order to determine its angular acceleration, I not only need to look at the force of gravity
vector, but also the component of that vector relative to the angle of the pendulum’s arm
(which itself is an angle relative to a pendulum at rest).

In the above case, since the pendulum’s arm is of fixed length, the only variable in the
scenario is the angle. I am going to simulate the pendulum’s motion through the use of
angular velocity and acceleration. The angular acceleration will be calculated using
Newton’s second law with a little trigonometry twist.

Let’s zoom in on the right triangle from the pendulum diagram.

Figure 3.10 Figure 3.11
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You can see that the force of the pendulum
(Fp) should point perpendicular to the arm of
the pendulum in the direction that the
pendulum is swinging. After all, if there were
no arm, the bob would fall straight down. It’s
the tension force of the arm that keeps the
bob accelerating towards the pendulum’s
rest state. Since the force of gravity (Fg)
points downward, by making a right triangle
out of these two vectors, you’ll see
something quite magnificent. The force of
gravity becomes the hypotenuse of a right
triangle which can be separated into two
components, one of which represents the
force of the pendulum. Since sine equals
opposite over hypotenuse, you‘ll then have:

sine(θ) = Fp / Fg

Therefore:

Fp = Fg * sine(θ)

Lest you forget, I’ve been doing all of this with a single question in mind: What is the angular
acceleration of the pendulum? Once I have the angular acceleration, I’ll be able to apply the
rules of motion to find the new angle for the pendulum.

angular velocity = angular velocity + angular acceleration
angle = angle + angular velocity

The good news is Newton’s second law states that there is a relationship between force and
acceleration, namely F = M * A, or A = F / M. So if the force of the pendulum is equal to the
force of gravity times sine of the angle, then:

pendulum angular acceleration = acceleration due to gravity * sine (θ)

This is a good time for a reminder that I’m a p5.js codere and not a physicist. Yes, I know that
the acceleration due to gravity on earth is 9.8 meters per second squared. But this number
isn’t relevant here. What I have is just an arbitrary constant (I’ll call it gravity), one that we
can use to scale the acceleration to something that feels right.

angular acceleration = gravity * sine(θ)

Amazing. After all that, the formula is so simple. You might be wondering, why bother going
through the derivation at all? I mean, learning is great and all, but I could have easily just said,
"Hey, the angular acceleration of a pendulum is some constant times the sine of the angle."

Figure 3.12
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This is just another moment for me to emphasize that the purpose of the book is not to learn
how pendulums swing or gravity works. The point is to think creatively about how things can
move about the screen in a computationally based graphics system. The pendulum is just a
case study. If you can understand the approach to programming a pendulum, then however
you choose to design your onscreen world, you can apply the same techniques.

Of course, I’m not finished yet. I may be happy with the simple, elegant formula, but I still
have to apply it in code. This is most definitely a good time to practice some object-oriented
programming skills and create a Pendulum class. Let’s think about all the properties I’ve
mentioned in the pendulum discussion that the class will need:

• arm length

• angle

• angular velocity

• angular acceleration

I’ll also need to write a function update() to update the pendulum’s angle according to the
formula…

class Pendulum  {

constructor(){

Length of armthis.r = ????;

Pendulum arm anglethis.angle = ????;

Angular velocitythis.aVelocity = ????;

Angular accelerationthis.aAcceleration = ????;
}

update() {

Arbitrary constantlet gravity = 0.4;

Calculate acceleration according to our formula.this.aAcceleration = -1 * gravity *
sin(this.angle);

Increment velocity.this.aVelocity += this.aAcceleration;

Increment angle.this.angle += this.aVelocity;

}
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...as well as a function display() to draw
the pendulum on the canvas. This begs the
question: “Um, where do you draw the
pendulum?” I know the angle and the arm
length, but how do I calculate the x,y
(Cartesian!) coordinates for both the
pendulum’s pivot point (let’s call it origin)
and bob position (let’s call it position)? This
may be getting a little tiresome, but the
answer, yet again, is trigonometry.

The origin is just something made up, as is
the arm length. Let’s say:

I’ve got the current angle stored in the variable angle. So relative to the origin, the
pendulum’s position is a polar coordinate: (r,angle). And I need it to be Cartesian. Luckily, I
just spent some time (section 3.5) deriving the formula for converting from polar to Cartesian.
And so:

Note, however that sin(angle) is used for the x-value and cos(angle) for the y. This is the
opposite of the formula established earlier in Chapter 3. The reason for this is that I am
looking for the top angle of the right-triangle pointing down as depicted in Figure 3.13.

Since the position is relative to wherever the origin happens to be, I can just add origin to the
position vector:

And all that remains is the little matter of drawing a line and circle (you should be more
creative, of course).

Before I put everything together, there’s one last little detail I neglected to mention. Let’s think

Figure 3.13

this.origin = createVector(100, 10);
this.r = 125;

let position = createVector(r * sin(this.angle), r * cos(this.angle));

this.position.add(this.origin);

stroke(0);
fill(175);
line(this.origin.x, this.origin.y, this.position.x, this.position.y);
circle(this.position.x, this.position.y, 16);
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about the pendulum arm for a moment. Is it a metal rod? A string? A rubber band? How is it
attached to the pivot point? How long is it? What is its mass? Is it a windy day? There are a
lot of questions that I could continue to ask that would affect the simulation. I choose to live,
however, in a fantasy world, one where the pendulum’s arm is some idealized rod that never
bends and the mass of the bob is concentrated in a single, infinitesimally small point.
Nevertheless, even though I don’t want to worry myself with all of these questions, I should
add one more variable to the calculation of angular acceleration. To keep things simple, in
the derivation of the pendulum’s acceleration, I assumed that the length of the pendulum’s
arm is 1. In truth, the length of the pendulum’s arm affects the acceleration greatly: the
longer the arm, the slower the acceleration. To simulate a pendulum more accurately, I
suggest dividing by that length, in this case r. For a more involved explanation, visit The
Simple Pendulum website (http://calculuslab.deltacollege.edu/ODE/7-A-2/7-A-2-h.html).

Finally, a real-world pendulum is going to experience some amount of friction (at the pivot
point) and air resistance. With the code as is, the pendulum would swing forever, so to make
it more realistic I can use a “damping” trick. I say trick because rather than model the
resistance forces with some degree of accuracy (as I did in Chapter 2), I can achieve a
similar result by reducing the angular velocity during each cycle. The following code
reduces the velocity by 1% (or multiplies it by 99%) during each frame of animation:

Putting everything together, I have the following example (with the pendulum beginning at a
45-degree angle).

Example 3.10: Swinging pendulumExample 3.10: Swinging pendulum

this.aAcceleration = (-1 * G * sin(this.angle)) / r;

this.aVelocity *= 0.99;

let pendulum;

function setup() {
createCanvas(640, 360);
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We make a new Pendulum object with an origin

position and arm length.

pendulum = new Pendulum(width/2, 10, 125);

}

function draw() {
background(255);
pendulum.update();
pendulum.display();

}

class Pendulum  {

constructor(x, y, r) {

Many, many variables to keep track of the

Pendulum’s various properties

this.origin = createVector(x, y); // position
of arm origin

this.position = createVector();   // position
of bob

this.r = r;             // Length of arm
this.angle = PI / 4;    // Pendulum arm angle
this.aVelocity = 0;     // Angle velocity
this.aAcceleration = 0; // Angle acceleration
this.damping = 0.995;   // Arbitrary damping

}

update() {
lete gravity = 0.4;

Formula we worked out for angular

acceleration

this.aAcceleration = (-1 * gravity / this.r) *
sin(this.angle);

Standard angular motion algorithmthis.aVelocity += this.aAcceleration;
this.angle += this.aVelocity;

Apply some damping.this.aVelocity *= this.damping;
}

display() {

Where is the bob relative to the origin? Polar to

Cartesian coordinates will tell us!

this.position.set(this.r * sin(this.angle),
this.r * cos(this.angle));

this.position.add(this.origin);

stroke(0);

The armline(this.origin.x, this.origin.y,
this.position.x, this.position.y);

fill(175);

The bobcircle(this.position.x, this.position.y, 16);

}
}
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(Note that the version of the example posted on the website has additional code to allow
the user to grab the pendulum and swing it with the mouse.)

Exercise 3.12Exercise 3.12

String together a series of pendulums so that the endpoint of one is the origin point
of another. Note that doing this may produce intriguing results but will be wildly
inaccurate physically. Simulating an actual double pendulum involves sophisticated
equations, which you can read about here: http://scienceworld.wolfram.com/
physics/DoublePendulum.html (http://scienceworld.wolfram.com/physics/
DoublePendulum.html).

Exercise 3.13Exercise 3.13

Using trigonometry, what is the
magnitude of the normal force in the
illustration on the right (the force
perpendicular to the incline on which
the sled rests)? Note that, as indicated,
the “normal” force is a component of
the force of gravity.

Exercise 3.14Exercise 3.14

Create an example that simulates a box sliding down the incline with friction. Note
that the magnitude of the friction force is equal to the normal force.
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3.10 Spring Forces3.10 Spring Forces

In section 3.6 (see page 15), I looked at modeling simple harmonic motion by mapping the sine
wave to a pixel range. Exercise 3.6 (see page 19) asked you to use this technique to create a
simulation of a bob hanging from a spring. While using the sin() function is a quick-and-dirty,
one-line-of-code way of getting such a result, it won’t do if what you really want is to have a
bob hanging from a spring in a two-dimensional space that responds to other forces in the
environment (wind, gravity, etc.) To accomplish a simulation like this (one that is identical to
the pendulum example, only now the arm is a springy connection), you need to model the
forces of a spring using vectors.

Figure 3.14

The force of a spring is calculated according to Hooke’s law, named for Robert Hooke, a
British physicist who developed the formula in 1660. Hooke originally stated the law in Latin:
"Ut tensio, sic vis," or “As the extension, so the force.” Think of it this way:

The force of the spring is directly proportional to the extension of the spring.
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In other words, if you pull on the bob a lot,
the force will be strong; if you pull on the
bob a little, the force will be weak.
Mathematically, the law is stated as follows:

Fspring = - k * x

• k is constant and its value will
ultimately scale the force. Is the
spring highly elastic or quite
rigid?

• x refers to the displacement of
the spring, i.e. the difference
between the current length and
the rest length. The rest length is
defined as the length of the
spring in a state of equilibrium.

Now remember, force is a vector, so you
need to calculate both magnitude and direction. Let’s look at one more diagram of the
spring and label all the givens we might have in a p5.js sketch.

Figure 3.16

For the code, I‘ll start with the following three variables as shown in Figure 3.16.

I’ll then use Hooke’s law to calculate the magnitude of the force. I need to calculate k and x.

Figure 3.15: x = current length - rest length

let anchor = createVector();
let position = createVector();
let restLength = ????;
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k is easy; it’s just a constant, so I’ll make something up.

x is perhaps a bit more difficult. I need to know the “difference between the current length
and the rest length.” The rest length is defined as the variable restLength. What’s the current
length? The distance between the anchor and the bob. And how can I calculate that distance?
How about the magnitude of a vector that points from the anchor to the bob? (Note that this is
exactly the same process employed when calculating distance in Example 2.9: gravitational
attraction.)

Now that I’ve sorted out the elements necessary for the magnitude of the force (-1 * k * x), I
need to figure out the direction, a unit vector pointing in the direction of the force. The good
news is that I already have this vector. Right? Just a moment ago I asked the question: “How I
can calculate that distance? How about the magnitude of a vector that points from the anchor
to the bob?” Well, that is the direction of the force!

Figure 3.17

Figure 3.17 shows that if you stretch the spring beyond its rest length, there should be a force

let k = 0.1;

A vector pointing from anchor to bob gives us the

current length of the spring.

let dir = p5.Vector.sub(bob, anchor);

let currentLength = dir.mag();
let x = currentLength - restLength;
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pulling it back towards the anchor. And if it shrinks below its rest length, the force should
push it away from the anchor. This reversal of direction is accounted for in the formula with
the -1. And so all I need to do is set the magnitude of the vector used used for the distance
calculation! Let’s take a look at the code and rename that vector variable as force.

Now that I have the algorithm worked out for computing the spring force vector, the
question remains: what object-oriented programming structure should I use? This, again, is
one of those situations in which there is no “correct” answer. There are several possibilities;
which one I choose depends on my goals and personal coding style. Since I’ve been
working all along with a Mover class, I’ll stick with this same framework. I’ll think of the
Mover class as the spring’s “bob.” The bob needs position, velocity, and acceleration
vectors to move about the screen. Perfect—I’ve got that already! And perhaps the bob
experiences a gravity force via the applyForce() function. Just one more step—applying
the spring force:

Magnitude of spring force according to Hooke’s

law

let k = 0.1;
let force = p5.Vector.sub(bob, anchor);
let currentLength = force.mag();
let x = currentLength - restLength;

Putting it together: direction and magnitude!force.setMag(-1 * k * x);

let bob;

function setup() {
bob = new Bob();

}

function draw()  {

Chapter 2 “make-up-a-gravity force”let gravity = createVector(0, 1);

bob.applyForce(gravity);

I need to also calculate and apply a springI need to also calculate and apply a spring

force!force!

let springForce = _______________????
bob.applyForce(spring);

The standard update() and display() functionsbob.update();
bob.display();

}
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Figure 3.18

One option would be to write out all of the spring force code in the main draw() loop. But
thinking ahead to when you might have multiple bobs and multiple spring connections, it
makes a good deal of sense to write an additional class, a Spring class. As shown in Figure
3.18, the Bob class keeps track of the movements of the bob; the Spring class keeps track of
the spring’s anchor and its rest length and calculates the spring force on the bob.

This allows me to write a lovely sketch as follows:

let bob;

Adding a Spring objectAdding a Spring objectlet spring;

function setup() {
bob = new Bob();
spring = new Spring();

}

function draw()  {
let gravity = createVector(0,1);
bob.applyForce(gravity);

This new function in the Spring class will takeThis new function in the Spring class will take

care of computing the force of the spring on thecare of computing the force of the spring on the

bob.bob.

spring.connect(bob);
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You may notice here that this is quite similar to what I did in Example 2.6 (see page 0) with
an attractor. There, I wrote something like:

The analogous situation here with a spring would be:

Nevertheless, in this example all I said was:

What gives? Why don’t I need to call applyForce() on the bob? The answer is, of course,
that I do need to call applyForce() on the bob. Only instead of doing it in draw(), I’m
demonstrating that a perfectly reasonable (and sometimes preferable) alternative is to ask
the connect() function to internally handle calling applyForce() on the bob.

Why do it one way with the Attractor class and another way with the Spring class? When I
first discussed forces, it was a bit clearer to show all the forces being applied in the draw()
loop, and hopefully this helped you learn about force accumulation. Now that you’re more
comfortable with that, perhaps it’s simpler to embed some of the details inside the objects
themselves.

Let’s take a look at the rest of the elements in the Spring class.

bob.update();
bob.display();
spring.display();

}

let force = attractor.attract(mover);
mover.applyForce(force);

let force = spring.connect(bob);
bob.applyForce(force);

spring.connect(bob);

connect(bob) {
let force = some fancy calculations

The function connect() takes care of calling

applyForce() and therefore doesn’t have to

return a vector to the calling area.

bob.applyForce(force);

}
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Example 3.11: A Spring connectionExample 3.11: A Spring connection

class Spring {

The constructor initializes the anchor point and

rest length.

constructor(x, y, length) {

The spring’s anchor position.this.anchor = createVector(x, y);

Rest length and spring constant variablesthis.length = length;
this.k = 0.1;

}

Calculate spring force—our implementation of

Hooke’s Law.

connect(bob) {

Get a vector pointing from anchor to BobGet a vector pointing from anchor to Bob

position.position.

let force = p5.Vector.sub(bob.position,
this.anchor);

Calculate the displacement between distanceCalculate the displacement between distance

and rest length.and rest length.

let d = force.mag();
let stretch = d - this.length;

Direction and magnitude together!Direction and magnitude together!force.normalize();
force.mult(-1 * this.k * stretch);

Call applyForce() right here!bob.applyForce(force);

}

Draw the anchor.display() {
fill(100);
circle(this.anchor.x, this.anchor.y, 10);

}
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The full code for this example is included on the book website, and the that version also
incorporates two additional features: (1) the Bob class includes functions for mouse
interactivity so that the bob can be dragged around the window, and (2) the Spring object
includes a function to constrain the connection’s length between a minimum and a
maximum.

Exercise 3.15Exercise 3.15

Before running to see the example online, take a look at this constrain function and
see if you can fill in the blanks.

Exercise 3.16Exercise 3.16

Create a system of multiple bobs and spring connections. Try connecting a bob to
another bob with no fixed anchor?

Draw the spring connection between Bob

position and anchor.

displayLine(b) {
stroke(255);
line(b.position.x, b.position.y,

this.anchor.x, this.anchor.y);
}

}

constrainLength(b, minlen, maxlen) {

Vector pointing from Bob to Anchorlet dir = p5.Vector.sub(______,______);

let d = dir.mag();

Is it too short?if (d < minlen) {

dir.setMag(________);

Keep position within constraint.b.position = p5.Vector.add(______,
______);

b.velocity.mult(0);

Is it too long?} else if (____________) {

dir.setMag(_________);

Keep position within constraint.b.position = p5.Vector.add(______,
______);

b.velocity.mult(0);
}

}
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The Ecosystem ProjectThe Ecosystem Project

Step 3 Exercise:

Take one of your creatures and incorporate oscillation into its motion. You can use
the Oscillator class from Example 3.7 as a model. The Oscillator object,
however, oscillates around a single point (the middle of the window). Try oscillating
around a moving point. In other words, design a creature that moves around the
screen according to position, velocity, and acceleration. But that creature isn’t just a
static shape, it’s an oscillating body. Consider tying the speed of oscillation to the
speed of motion. Think of a butterfly’s flapping wings or the legs of an insect. Can
you make it appear that the creature’s internal mechanics (oscillation) drive its
locomotion? For a sample, check out the “AttractionArrayWithOscillation” example
with the code download.
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