
Chapter 1. VectorsChapter 1. Vectors
“Roger, Roger. What’s our vector, Victor?”

— Captain Oveur (Airplane)

This book is all about looking at the world around us and coming up with clever ways to

simulate that world with code. Divided into three parts, the book will start by looking at basic

physics—how an apple falls from a tree, a pendulum swings in the air, the earth revolves

around the sun, etc. Absolutely everything contained within the six chapters of this book

requires the use of the most basic building block for programming motion—the vector. And so

this is where we begin our story.

Now, the word vector can mean a lot of different things. Vector is the name of a New Wave

rock band formed in Sacramento, CA in the early 1980s. It’s the name of a breakfast cereal

manufactured by Kellogg’s Canada. In the field of epidemiology, a vector is used to describe

an organism that transmits infection from one host to another. In the C++ programming

language, a vector (std::vector) is an implementation of a dynamically resizable array data

structure. While all these definitions are interesting, they’re not what we’re looking for. What I

want to focus on is a Euclidean vector (named for the Greek mathematician Euclid and also

known as a geometric vector). When you see the term “vector” in this book, you can assume it

refers to a Euclidean vector, defined as an entity that has both magnitude and direction.

A vector is typically drawn as a arrow; the direction is indicated by where the arrow is

pointing, and the magnitude by the length of the arrow itself.

28

Figure 1.1 A vector (drawn as an arrow) has magnitude (length of arrow) and direction (which way it is
pointing).

In the above illustration, the vector is drawn as an arrow from point A to point B and serves

as an instruction for how to travel from A to B.

1.1 Vectors, You Complete Me1.1 Vectors, You Complete Me

Before we dive into more of the details about vectors, I’d like to create a basic p5.js

example that demonstrates why you should care about vectors in the first place. If you’ve

read any of the introductory p5.js textbooks or taken an introduction to creative coding

course (and hopefully you’ve done one of these things to help prepare you for this book),

you probably, at one point or another, learned how to write a simple bouncing ball sketch.

If you are reading this book as a PDF or in print, then you will only see screenshots of the canvas. Motion,
of course, is a key element of the discussion, so to the extent possible, the static screenshots will include trails
to give a sense of the behavior. For more about how to draw trails, see the code examples linked from the
website.

Chapter 1. Vectors

29

positionposition x and y

SpeedSpeed xspeed and yspeed

AccelerationAcceleration xacceleration and yacceleration

Target positionTarget position xtarget and ytarget

WindWind xwind and ywind

FrictionFriction xfriction and yfriction

Example 1.1: Bouncing ball with no vectorsExample 1.1: Bouncing ball with no vectors

In the above example, there is a very simple world—a blank canvas with a circular shape (a

“ball”) traveling around. This ball has some properties, which are represented in the code as

variables.

In a more sophisticated sketch, you might have many more variables:

Variables for position and speed of ball.let x = 100;
let y = 100;
let xspeed = 1;
let yspeed = 3.3;

Remember how p5 works? setup() is executed

once when the sketch starts and draw() loops

forever and ever (until you quit).

function setup() {
createCanvas(640, 360);
background(255);

}

function draw() {
background(255);

Move the ball according to its speed.x = x + xspeed;
y = y + yspeed;

Check for bouncing.if ((x > width) || (x < 0)) {
xspeed = xspeed * -1;

}
if ((y > height) || (y < 0)) {

yspeed = yspeed * -1;
}

stroke(0);
fill(175);

Display the ball at the position (x,y).ellipse(x, y, 16, 16);

}

The Nature of Code (v2.0)

30

It’s becoming clearer that for every concept in this world (wind, position, acceleration, etc.),

I’ll need two variables. And this is only a two-dimensional world. In a 3D world, I’d need x, y,

z, xspeed, yspeed, zspeed, and so on.

Wouldn’t it be nice if I could simplify the code and use fewer variables?

Instead of:

I would love to have…

Taking this first step in using vectors won’t allow me to do anything new. Just adding

vectors won’t magically make your Processing sketches simulate physics. However, they will

simplify your code and provide a set of functions for common mathematical operations that

happen over and over and over again while programming motion.

As an introduction to vectors, I’m going to stick to two dimensions for quite some time (at

least the first several chapters). All of these examples can be fairly easily extended to three

dimensions (and the class I will use—p5.Vector—allows for three dimensions.) However, it’s

easier to start with just two.

1.2 Vectors for p5.js Programmers1.2 Vectors for p5.js Programmers

One way to think of a vector is the difference between two points. Consider how you might

go about providing instructions to walk from one point to another.

Here are some vectors and possible translations:

let x;
let y;
let xspeed;
let yspeed;

let position;
let speed;

Chapter 1. Vectors

31

(-15, 3)(-15, 3) Walk fifteen steps west; turn and walk three steps north.

(3, 4)(3, 4) Walk three steps east; turn and walk four steps north.

(2, -1)(2, -1) Walk two steps east; turn and walk one step south.

Figure 1.2

You’ve probably done this before when programming motion. For every frame of animation

(i.e. a single cycle through p5’s draw() loop), you instruct each object on the screen to move

a certain number of pixels horizontally and a certain number of pixels vertically.

Figure 1.3

For every frame:

new position = velocity applied to current position

If velocity is a vector (the difference between two points), what is position? Is it a vector too?

Technically, you could argue that position is not a vector, since it’s not describing how to

move from one point to another—it’s describing a singular point in space.

The Nature of Code (v2.0)

32

positionposition x,y

velocityvelocity xspeed,yspeed

Nevertheless, another way to describe a position is the path taken from the origin to reach

that position. Hence, a position is the vector representing the difference between position

and origin.

Figure 1.4

Let’s examine the underlying data for both position and velocity. In the bouncing ball

example, I had the following:

Notice how I am storing the same data for both—two floating point numbers, an x and a y. If

I were to write a vector class myself, I’d start with something rather basic:

At its core, a Vector is just a convenient way to store two values (or three, as you’ll see in

3D examples).

And so this …

becomes …

class Vector {
constructor(x, y) {

this.x = x;
this.y = y;

}
}

let x = 100;
let y = 100;
let xspeed = 1;
let yspeed = 3.3;

Chapter 1. Vectors

33

I'll note that in the above code the vector objects are not created, as you might expect, by

invoking a constructor function. Instead of new Vector(x, y) (or more accurately in p5 new
p5.Vector(x, y)), createVector(x, y) is called. The createVector() function is included in

a p5.js as a helper function to take care of some details behind the scenes as well as simplify

the code. Except in special circumstances, p5.Vector objects should always be created

with createVector().

Now that I have two vector objects (position and velocity), I’m ready to implement the

algorithm for motion—position = position + velocity. In Example 1.1, without vectors, I had:

In an ideal world, I would be able to rewrite the above as:

However, in JavaScript, the addition operator + is reserved for primitive values (integers,

floats, etc.) only. JavaScript doesn’t know how to add two p5.Vector objects together any

more than it knows how to add two p5.Font objects or p5.Image objects. Fortunately, the

p5.Vector class includes functions for common mathematical operations.

1.3 Vector Addition1.3 Vector Addition

Before I continue looking at the p5.Vector class and its add() method (purely for the sake of

learning since it’s already implemented for us in p5.js itself), let’s examine vector addition

using the notation found in math and physics textbooks.

Vectors are typically written either in boldface type or with an arrow on top. For the purposes

of this book, to distinguish a vector from a scalar (scalar refers to a single value, such as an

integer or a floating point number), we’ll use the arrow notation:

• Vector: v

• Scalar: x

Let’s say I have the following two vectors:

let position = createVector(100, 100);
let velocity = createVector(1, 3.3);

Add each speed to each position.x = x + xspeed;
y = y + yspeed;

Add the velocity vector to the position vector.position = position + velocity;

The Nature of Code (v2.0)

34

Figure 1.5

Each vector has two components, an x and a y. To add two vectors together, add both x’s

and both y’s.

Figure 1.6

In other words:

w = u + v

can be written as:

wx = ux − vxwy = uy − vy

Then, replacing u and v with their values from Figure 1.6, you get:

wx = 5 + 3wy = 2 + 4

which means that:

wx = 8wy = 6

Finally, writing that as a vector:

Chapter 1. Vectors

35

w = (8, 6)

Now that I've covered how to add two vectors together, you can look at how addition is

implemented in the p5.Vector class itself. Let’s write a function called add() that takes

another Vector object as its argument.

Basic Number Properties with VectorsBasic Number Properties with Vectors

Addition with vectors follow the same algebraic rules as with real numbers.

The commutative rule: u + v = v + u

The associative rule: u + (v + w) = (u + v) + w

Fancy terminology and symbols aside, this is really quite a simple concept. The

common sense properties of addition apply to vectors as well.

3 + 2 = 2 + 3
(3 + 2) + 1 = 3 + (2 + 1)

Now that I've covered how add() is written inside of p5.Vector, I can return to the bouncing

ball example with its position + velocity algorithm and implement vector addition:

And here I am, ready to rewrite the bouncing ball example using vectors.

class Vector {

constructor(x, y) {
this.x = x;
this.y = y;

}

New! A function to add another Vector to thisNew! A function to add another Vector to this

Vector. Simply add theVector. Simply add the xx components and thecomponents and the yy;;

components together.components together.

add(v) {
this.y = this.y + v.y;
this.x = this.x + v.x;

}

}

Add the current velocity to the position.position = position + velocity;

position.add(velocity);

The Nature of Code (v2.0)

36

Example 1.2: Bouncing ball with vectors!Example 1.2: Bouncing ball with vectors!

Now, you might feel somewhat disappointed. After all, this may appear to have made the

code more complicated than the original version. While this is a perfectly reasonable and

valid critique, it’s important to understand that I haven’t fully realized the power of

programming with vectors just yet. Looking at a simple bouncing ball and only implementing

vector addition is just the first step. As I move forward into a more complex world of multiple

objects and multiple forces (which I’ll introduce in Chapter 2), the benefits of vectors will

become more apparent.

I should, however, note an important aspect of the above transition to programming with

vectors. Even though I am using p5.Vector objects to describe two values—the x and y of

position and the x and y of velocity—I will still often need to refer to the x and y components

of each vector individually. When I go to draw an object in p5.js, there’s no means to say:

The ellipse() function does not allow for a p5.Vector as an argument. An ellipse can

only be drawn with two scalar values, an x-coordinate and a y-coordinate. And so you must

dig into the p5.Vector object and pull out the x and y components using object-oriented

dot syntax.

Instead of a bunch of floats, we now just haveInstead of a bunch of floats, we now just have

two PVector variables.two PVector variables.

let position;
let velocity;

function setup() {
size(640, 360);

position = createVector(100, 100);
velocity = createVector(2.5, 5);

}

function draw() {
background(255);

position.add(velocity);

We still sometimes need to refer to theWe still sometimes need to refer to the

individual components of a PVector andindividual components of a PVector and

can do so using the dot syntax: position.x,can do so using the dot syntax: position.x,

velocity.y, etc.velocity.y, etc.

if ((position.x > width) || (position.x < 0)) {
velocity.x = velocity.x * -1;

}
if ((position.y > height) || (position.y < 0)) {

velocity.y = velocity.y * -1;
}

stroke(0);
fill(175);
ellipse(position.x, position.y, 16, 16);

}

ellipse(position, 16, 16);

Chapter 1. Vectors

37

The same issue arises when testing if the circle has reached the edge of the window, and you

need to access the individual components of both vectors: position and velocity.

Exercise 1.1Exercise 1.1

Find something you’ve previously made in p5.js using separate x and y variables and

use vectors instead.

Exercise 1.2Exercise 1.2

Take one of the walker examples from the introduction and convert it to use vectors.

Exercise 1.3Exercise 1.3

Extend the bouncing ball with vectors example into 3D. Can you get a sphere to

bounce around a box?

1.4 More Vector Math1.4 More Vector Math

Addition was really just the first step. There are many mathematical operations commonly

used with vectors. Below is a comprehensive list of the operations available as functions in

the p5.Vector class. I’ll go through a few of the key ones now. As the examples get more

sophisticated in later chapters, I’ll continue to reveal the details of more functions.

• add() — add vectors

• sub() — subtract vectors

• mult() — scale the vector with multiplication

• div() — scale the vector with division

• mag() — calculate the magnitude of a vector

• setMag() — set the magnitude of a vector

ellipse(position.x, position.y, 16, 16);

if ((position.x > width) || (position.x < 0)) {
velocity.x = velocity.x * -1;

}

The Nature of Code (v2.0)

38

• normalize() — normalize the vector to a unit length of 1

• limit() — limit the magnitude of a vector

• heading() — the 2D heading of a vector expressed as an angle

• rotate() — rotate a 2D vector by an angle

• lerp() — linear interpolate to another vector

• dist() — the Euclidean distance between two vectors (considered as points)

• angleBetween() — find the angle between two vectors

• dot() — the dot product of two vectors

• cross() — the cross product of two vectors (only relevant in three dimensions)

• random2D() — make a random 2D vector

• random3D() — make a random 3D vector

Having already covered addition, let’s start with subtraction. This one’s not so bad; just take

the plus sign and replace it with a minus!

Vector subtractionVector subtraction

w = u − v

can be written as:

wx = ux − vx

wy = uy − vy

Figure 1.7: Vector Subtraction

and so the function inside p5.Vector looks like:

sub(v) {
this.x = this.x - v.x;
this.y = this.y - v.y;

}

Chapter 1. Vectors

39

The following example demonstrates vector subtraction by taking the difference between two

points—the mouse position and the center of the window. Note the use of translate to

visualize the resulting vector as a line from the center (width/2, height/2) to the mouse.

Example 1.3: Vector subtractionExample 1.3: Vector subtraction

Vector multiplicationVector multiplication

Moving on to multiplication, you have to think a little bit differently. Multiplying a vector,

typically refers to the process of scaling a vector. If I want to scale a vector to twice its size or

one-third of its size (leaving its direction the same), I would say: “Multiply the vector by 2” or

“Multiply the vector by 1/3.” Note that this is multiplying a vector by a scalar, a single number,

not another vector.

function setup() {
createCanvas(640, 360);

}

function draw() {
background(255);

Two p5.Vector, one for the mouse location and

one for the center of the window

let mouse = createVector(mouseX, mouseY);
let center = createVector(width/2, height/2);

Draw the original two vectorsstroke(200);
line(0, 0, mouse.x, mouse.y);
line(0, 0, center.x, center.y);

Vector subtraction!mouse.sub(center);

Draw a line to represent the result of subtraction.

Notice how I move the origin with translate() to

place the vector

stroke(0);
translate(width/2, height/2);
line(0, 0, mouse.x, mouse.y);

}

The Nature of Code (v2.0)

40

To scale a vector, multiply each component (x and y) by a scalar.

w = u ∗ n

can be written as:

wx = ux ∗ n
wy = uy ∗ n

Let’s look at an example with vector

notation.

u = (−3, 7)

n = 3

w = u ∗ n

wx = −3 ∗ 3
wy = 7 ∗ 3

w = (−9, 21)

Therefore, the function inside the p5.Vector class is written as:

And implementing multiplication in code is as simple as:

Figure 1.8: Scaling a vector

mult(n) {

With multiplication, the components of the vector

are multiplied by a number.

this.x = this.x * n;
this.y = this.y * n;

}

let u = vector(-3, 7);

This PVector is now three times the size and is

equal to (-9, 21).

u.mult(3);

Chapter 1. Vectors

41

Example 1.4: Multiplying a vectorExample 1.4: Multiplying a vector

Division works just like

multiplication—simply replace the

multiplication sign (asterisk) with the division

sign (forward slash).

function setup() {
createCanvas(640, 360);

}

function draw() {
background(255);

let mouse = createVector(mouseX, mouseY);
let center = createVector(width/2, height/2);
mouse.sub(center);

Multiplying a vector! The vector is now half its

original size (multiplied by 0.5).

mouse.mult(0.5);

translate(width/2, height/2);
line(0, 0, mouse.x, mouse.y);

}

Figure 1.9

div(n) {
this.x = this.x / n;
this.y = this.y / n;

}

let u = createVector(8, -4);

Dividing a vector! The vector is now half its

original size (divided by 2).

u.div(2);

The Nature of Code (v2.0)

42

More Number Properties with VectorsMore Number Properties with Vectors

As with addition, basic algebraic rules of multiplication apply to vectors.

The associative rule: (n ∗ m) ∗ v = n ∗ (m ∗ v)

The distributive rule with 2 scalars, 1 vector: (n + m) ∗ v = (n ∗ v) + (m ∗ v)

The distributive rule with 2 vectors, 1 scalar: (u + v) ∗ n = (u ∗ n) + (v ∗ n)

1.5 Vector Magnitude1.5 Vector Magnitude

Multiplication and division, as I just described, change the length of a vector without

affecting direction. Perhaps you’re wondering: “OK, so how do I know what the length of a

vector is? I know the components (x and y), but how long (in pixels) is the actual arrow?”

Understanding how to calculate the length (also known as magnitude) of a vector is

incredibly useful and important.

Notice in Figure 1.10 how the vector, drawn

as an arrow and two components (x and y),

creates a right triangle. The sides are the

components and the hypotenuse is the

arrow itself. We’re lucky to have this right

triangle, because once upon a time, a

Greek mathematician named Pythagoras

discovered a lovely formula to describe the

relationship between the sides and hypotenuse of a right triangle.

The Pythagorean theorem is a squared

plus b squared equals c squared, for right

triangles.

Armed with this formula, we can now

compute the magnitude of v as follows:

∣∣v∣∣ = vx ∗ vx + vy ∗ vy

or in p5.Vector:

Figure 1.10: The length or “magnitude” of a vector
v→ is often written as:∥ v→∥

Figure 1.11: The Pythagorean Theorem

Chapter 1. Vectors

43

Example 1.5: Vector magnitudeExample 1.5: Vector magnitude

1.6 Normalizing Vectors1.6 Normalizing Vectors

Calculating the magnitude of a vector is only the beginning. The magnitude function opens

the door to many possibilities, the first of which is normalization. Normalizing refers to the

process of making something “standard” or, well, “normal.” In the case of vectors, let’s

assume for the moment that a standard vector has a length of 1. To normalize a vector,

mag() {
return sqrt(this.x * this.x + this.y * this.y);

}

function setup() {
createCanvas(640, 360);

}

function draw() {
background(255);

let mouse = createVector(mouseX, mouseY);
let center = createVector(width/2, height/2);
mouse.sub(center);

The magnitude (i.e. length) of a vector can be

accessed via the mag() function. Here it is used as

the width of a rectangle drawn at the top of the

window.

const m = mouse.mag();
fill(0);
rect(0, 0, m, 10);

translate(width/2, height/2);
line(0, 0, mouse.x, mouse.y);

}

The Nature of Code (v2.0)

44

therefore, is to take a vector of any length and, keeping it pointing in the same direction,

change its length to 1, turning it into what is called a unit vector.

A unit vector describes a vector’s direction

without regard to its length. You’ll see this

come in especially handy once I start to

work with forces in Chapter 2.

For any given vector u , its unit vector

(written as û) is calculated as follows:

û =
∣∣u∣∣

u

In other words, to normalize a vector, divide each component by its magnitude. This is

pretty intuitive. Say a vector is of length 5. Well, 5 divided by 5 is 1. So, looking at a right

triangle, you then need to scale the hypotenuse down by dividing by 5. In that process the

sides shrink, divided by 5 as well.

In the p5.Vector class, the normalization

function is written as follows:

Of course, there’s one small issue. What if the magnitude of the vector is 0? You can’t

divide by 0! Some quick error checking will fix that right up:

Figure 1.12

Figure 1.13

normalize() {
let m = this.mag();
this.div(m);

}

normalize() {
let m = this.mag();
if (m > 0) {

this.div(m);
}
}

Chapter 1. Vectors

45

Example 1.6: Normalizing a vectorExample 1.6: Normalizing a vector

1.7 Vector Motion: Velocity1.7 Vector Motion: Velocity

All this vector math stuff sounds like something you should know about, but why? How will it

actually help you write code? Patience. It will take some time before the awesomeness of

using the p5.Vector class fully comes to light. This is actually a common occurrence when

first learning a new data structure. For example, when you first learn about an array, it might

seem like more work to use an array than to have several variables stand for multiple things.

But that plan quickly breaks down when you need a hundred, or a thousand, or ten thousand

things. The same can be true for vectors. What might seem like more work now will pay off

later, and pay off quite nicely. And you don’t have to wait too long, as your reward will come in

the next chapter.

function draw() {
background(255);

let mouse = createVector(mouseX, mouseY);
let center = createVector(width/2, height/2);
mouse.sub(center);

In this example, after the vector is normalized, it is

multiplied by 50 so that it is viewable onscreen.

Note that no matter where the mouse is, the

vector will have the same length (50) due to the

normalization process.

mouse.normalize();
mouse.mult(50);

translate(width/2, height/2);
line(0, 0, mouse.x, mouse.y);

}

The Nature of Code (v2.0)

46

For now, however, focus on how it works. What does it mean to program motion using

vectors? You’ve seen the beginning of this in Example 1.2 (see page 0): the bouncing ball.

An object on screen has a position (where it is at any given moment) as well as a velocity

(instructions for how it should move from one moment to the next). Velocity is added to

position:

And then the object is drawn at that position:

This is Motion 101.

1. Add velocity to position

2. Draw object at position

In the bouncing ball example, all of this code happened in within setup() and draw(). What

I want to do now is move towards encapsulating all of the logic for motion inside of a class.

This way, I can create a foundation for programming moving objects. In section I.2 of the

introduction (see page 2), “The Random Walker Class,” I briefly reviewed the basics of

object-oriented-programming (“OOP”). Beyond that short introduction, this book assumes

experience with objects and classes in JavaScript. If you need a refresher, I encourage you

to check out the JavaScript classes video tutorial (see page 0).

In this case, I’m going to create a generic Mover class that will describe a thing moving

around the screen. And so I must consider the following two questions:

1. What data does a mover have?

2. What functionality does a mover have?

The “Motion 101” algorithm has the answers to these questions. A Mover object has two

pieces of data: position and velocity, which are both p5.Vector objects.

Its functionality is about as simple. The Mover needs to move and it needs to be seen. I’ll

implement these needs as functions named update() and display(). I’ll put all of the

motion logic code in update() and draw the object in display().

position.add(velocity);

ellipse(position.x, position.y, 16, 16);

class Mover {
constructor(){

this.position = createVector();
this.velocity = createVector();

}

Chapter 1. Vectors

47

https://youtu.be/T-HGdc8L-7w

I’ve forgotten one crucial item, however: the object’s constructor. The constructor is a special

function inside of a class that creates the instance of the object itself. It is where you give

instructions on how to set up the object. It always has the same name as the class and is

called by invoking the new operator:

In this case, let’s arbitrarily decide to initialize the Mover object by giving it a random position

and a random velocity. Note the use of this with all variables that are part of the Mover
object.

If object-oriented programming is at all new to you, one aspect here may seem a bit

confusing. After all, I spent the beginning of this chapter discussing the p5.Vector class. The

p5.Vector class is the template for making the position object and the velocity object. So

what are they doing inside of yet another object, the Mover object? In fact, this is just about

the most normal thing ever. An object is something that holds data (and functionality). That

data can be numbers or other objects (arrays too)! You’ll see this over and over again in this

book. For example, in Chapter 4 (see page 145) I’ll write a class to describe a system of

particles. That ParticleSystem object will include a list of Particle objects…and each

Particle object will have as its data several p5.Vector objects!

Let’s finish off the Mover class by incorporating a function to determine what the object should

do when it reaches the edge of the canvas. For now let’s do something simple, and have it

wrap around the edges.

update() {

The Mover moves.this.position.add(this.velocity);

}

display() {
stroke(0);
fill(175);

The Mover is displayed.ellipse(this.position.x, this.position.y, 16,
16);

}
}

let m = new Mover();

constructor() {
this.position = createVector(random(width), random(height));
this.velocity = createVector(random(-2,2), random(-2,2));

}

checkEdges() {

The Nature of Code (v2.0)

48

Now that the Mover class is finished, I can move onto setup()> and draw(). First, declare a

Mover object:

Then create and initialize the mover in setup():

and call the appropriate functions in draw():

Here is the entire example for reference:

Example 1.7: Motion 101 (velocity)Example 1.7: Motion 101 (velocity)

When it reaches one edge, set position to the

other.

if (this.position.x > width) {
this.position.x = 0;

} else if (this.position.x < 0) {
this.position.x = width;

}

if (this.position.y > height) {
this.position.y = 0;

} else if (this.position.y < 0) {
this.position.y = height;

}

}

let mover;

mover = new Mover();

mover.update();
mover.checkEdges();
mover.display();

Declare Mover object.let mover;

function setup() {
createCanvas(640, 360);

Chapter 1. Vectors

49

Create Mover object.mover = new Mover();

}

function draw() {
background(255);

Call functions on Mover object.mover.update();
mover.checkEdges();
mover.display();

}

class Mover {

constructor() {

The object has two vectors: position and velocity.this.position = createVector(random(width),
random(height));

this.velocity = createVector(random(-2, 2),
random(-2, 2));

}

update() {

Motion 101: position changes by velocity.this.position.add(this.velocity);

}

display() {
stroke(0);
fill(175);
ellipse(this.position.x, this.position.y, 16, 16);

}

checkEdges() {
if (this.position.x > width) {
this.position.x = 0;

} else if (this.position.x < 0) {
this.position.x = width;

}

if (this.position.y > height) {
this.position.y = 0;

} else if (this.position.y < 0) {
this.position.y = height;

}
}

}

The Nature of Code (v2.0)

50

1.8 Vector Motion: Acceleration1.8 Vector Motion: Acceleration

OK. At this point, you hopefully feel comfortable with two things: (1) what a vector is and (2)

how to use vectors inside of an object to keep track of its position and movement. This is an

excellent first step and deserves a mild round of applause. Before standing ovations and

screaming fans, however, you need to make one more, somewhat bigger step forward. After

all, watching the Motion 101 example is fairly boring—the circle never speeds up, never

slows down, and never turns. For more sophisticated motion, for motion that appears in the

real world around us, I need to add one more vector to the class—acceleration.

The strict definition of acceleration I’m using here is: the rate of change of velocity. Think

about that definition for a moment. Is this a new concept? Not really. Velocity is defined as

the rate of change of position. In essence, I am developing a “trickle-down” effect.

Acceleration affects velocity, which in turn affects position (for some brief foreshadowing,

this point will become even more crucial in the next chapter, when I look at how forces

affect acceleration, which affects velocity, which affects position). In code, this reads:

As an exercise, from this point forward, I’m going to make a rule for myself. I will write every

example in the rest of this book without ever touching the value of velocity and position

(except to initialize them). In other words, the goal for programming motion is: Come up with

an algorithm for how to calculate acceleration and let the trickle-down effect work its magic.

(In truth, I’ll find reasons to break this rule, and will break it often but it’s a useful constraint

to begin with to illustrate the principles behind the motion algorithm.) And so I need to come

up with some ways to calculate acceleration:

Acceleration Algorithms!Acceleration Algorithms!

1. A constant acceleration

2. A random acceleration

3. Acceleration towards the mouse

Algorithm #1, a constant acceleration, is not particularly interesting, but it is the simplest

and gives me a starting point to incorporate acceleration into the code. The first thing I

need to do is add another variable to the Mover class:

velocity.add(acceleration);
position.add(velocity);

class Mover {
constructor(){

this.position = createVector();
this.velocity = createVector();

Chapter 1. Vectors

51

And incorporate acceleration into the update() function:

I’re almost done. The only missing piece is initialization in the constructor.

Let’s start the Mover object in the middle of the window…

…with an initial velocity of zero.

This means that when the sketch starts, the object is at rest. I don’t have to worry about

velocity anymore, as I am controlling the object’s motion entirely with acceleration. Speaking

of which, according to Algorithm #1, the first sketch involves constant acceleration. So let’s

pick a value.

Maybe you’re thinking, “Gosh, those values seem awfully small!” That’s right, they are quite

tiny. Acceleration values (measured in pixels) accumulate over time in the velocity, about thirty

times per second depending on the sketch’s frame rate. And so to keep the magnitude of the

velocity vector within a reasonable range, the acceleration values should remain quite small. I

can also manage this by incorporating the p5.Vector function limit().

This translates to the following:

What is the magnitude of velocity? If it’s less than 10, no worries; just leave it as is. If it’s more
than 10, however, reduce it to 10!

A new vector for accelerationA new vector for accelerationthis.acceleration = createVector();
}

update() {

Our motion algorithm is now two lines of code!Our motion algorithm is now two lines of code!this.velocity.add(this.acceleration);
this.position.add(this.velocity);

}

constructor() {

this.position = createVector(width/2, height/2);

this.velocity = createVector(0, 0);

this.acceleration = createVector(-0.001, 0.01);
}

The limit() function constrains the magnitude of a

vector.

this.velocity.limit(10);

The Nature of Code (v2.0)

52

Exercise 1.4Exercise 1.4

Write the limit() function for the p5.Vector class.

Let’s take a look at the changes to the Mover class, complete with acceleration and

limit().

Example 1.8: Motion 101 (velocity and constant acceleration)Example 1.8: Motion 101 (velocity and constant acceleration)

limit(max) {
if (_______ > _______) {

_________();
____(max);

}
}

class Mover {

constructor() {
this.position = createVector(width/2, height/2);
this.velocity = createVector(0, 0);

Acceleration is the key!this.acceleration = createVector(-0.001,
0.01);

The variable topspeed will limit the magnitude of

velocity.

this.topspeed = 10;

}

update() {

Velocity changes by acceleration and is limited

by topspeed.

this.velocity.add(this.acceleration);
this.velocity.limit(this.topspeed);

Chapter 1. Vectors

53

Exercise 1.5Exercise 1.5

Create a simulation of a car (or runner) that accelerates when you press the up key

and brakes when you press the down key.

Now on to Algorithm #2, a random acceleration. In this case, instead of initializing

acceleration in the object’s constructor, I want to pick a new acceleration each cycle, i.e. each

time update() is called.

Example 1.9: Motion 101 (velocity and random acceleration)Example 1.9: Motion 101 (velocity and random acceleration)

Because the random vector is a normalized one, I can try scaling it:

(a) scaling the acceleration to a constant value

this.position.add(this.velocity);
}

display() is the same.display() {}

checkEdges() is the same.checkEdges() {}

}

update() {

The random2D() function will give us a unit vector

pointing in a random direction.

this.acceleration = p5.Vector.random2D();

this.velocity.add(this.acceleration);
this.velocity.limit(this.topspeed);
this.position.add(this.velocity);

}

The Nature of Code (v2.0)

54

(b) scaling the acceleration to a random value

While this may seem like an obvious point, it’s crucial to understand that acceleration does

not merely refer to the speeding up or slowing down of a moving object, but rather any
change in velocity—magnitude or direction. Acceleration is used to steer an object, and

you’ll see this again and again in future chapters as I begin to program objects that make

decisions about how to move about the canvas.

Exercise 1.6Exercise 1.6

Referring back to the Introduction (see page 18), implement acceleration according

to Perlin noise.

1.9 Static vs. Non-Static Functions1.9 Static vs. Non-Static Functions

You might have noticed something a bit odd and unfamiliar in the previous example. The

random2D() function used to create a random unit vector was called on the p5.Vector
class name itself! This is what is known as a “static” function and is in a key concept

underlying the p5.Vector class. Algorithm #3 (accelerate towards the mouse), in fact,

requires further exploration of this concept: the difference between using static methods

and non-static methods.

Forgetting about vectors for a moment, take a look at the following code:

Pretty simple, right? x has the value of 0, we add y to it, and now x is equal to 5. I could

write the corresponding code pretty easily based on what we’ve learned about p5.Vector.

this.acceleration = p5.Vector.random2D();

ConstantConstantthis.acceleration.mult(0.5);

this.acceleration = p5.Vector.random2D();

RandomRandomthis.acceleration.mult(random(2));

let x = 0;
let y = 5;

x = x + y;

let v = createVector(0, 0);
let u = createVector(4, 5);
v.add(u);

Chapter 1. Vectors

55

The vector v has the value of (0,0), I add u to it, and now v is equal to (4,5). Easy, right?

Let’s take a look at another example of some simple floating point math:

x has the value of 0, I add y to it, and store the result in a new variable z. The value of x does

not change in this example (neither does y)! This may seem like a trivial point, and one that is

quite intuitive when it comes to mathematical operations with numbers. However, it’s not so

obvious with mathematical operations using p5.Vector. Let’s try to rewrite the above code

with vectors based on what we know so far.

The above might seem like a good guess, but it’s just not the way the p5.Vector class works.

If you look at the definition of add() . . .

you‘ll see that this code does not accomplish my goal. First, it does not return a new

p5.Vector object and second, it changes the value of the vector upon which it is called. In

order to add two vector objects together and return the result as a new vector, I must use the

static add() function.

Functions that are called from the class name itself (rather than from a specific object

instance) are known as static functions. Here are two examples of function calls that assume

two p5.Vector objects, v and u:

When writing your own classes, static functions are very rarely needed, so it‘s likely you not

have encountered them before. p5.Vector's static functions generic mathematical operations

to be performed on vectors without having to adjust the value of one of the input vectors.

Let’s look at how I might write the static version of add():

let x = 0;
let y = 5;

let z = x + y;

let v = createVector(0,0);
let u = createVector(4,5);

Don’t be fooled; this is incorrect!!!const w = v.add(u);

add(v) {
this.x = this.x + v.x;
this.y = this.y + v.y;

}

Static: called from the class name.p5.Vector.add(v, u);

Not static: called from an object instance.v.add(u);

The Nature of Code (v2.0)

56

The key difference here is that the function creates a new vector (v3) and returns the sum of

the components of v1 and v2 in v3 without changing the values of either original vector.

When you call a static function, instead of referencing an object instance, you reference the

name of the class itself.

The p5.Vector class has static versions of add(), sub(), mult(), and div().

Exercise 1.7Exercise 1.7

Translate the following pseudocode to code using static or non-static functions

where appropriate.

• The vector v equals (1,5).

• The vector u equals v multiplied by 2.

• The vector w equals v minus u.

• Divide the vector w by 3.

The static version of add allows two vectors to

be added together and the result assigned to a

new vector while leaving the original vectors (v

and u above) intact.

static add(v1, v2) {

let v3 = createVector(v1.x + v2.x, v1.y + v2.y);
return v3;

}

let v = createVector(0, 0);
let u = createVector(4, 5);

const w = v.add(u);

let w = p5.Vector.add(v, u);

let v = createVector(1, 5);
let u = ________._____(__,__);
let w = ________._____(__,__);
___________;

Chapter 1. Vectors

57

1.10 Interactivity with Acceleration1.10 Interactivity with Acceleration

To finish out this chapter, let’s try something

a bit more complex and a great deal more

useful. I’ll dynamically calculate an object’s

acceleration according to a rule stated in

Algorithm #3 — the object accelerates
towards the mouse.

Anytime you want to calculate a vector

based on a rule or a formula, you need to compute two things: magnitude and direction. I’ll

start with direction. I know the acceleration vector should point from the object’s position

towards the mouse position. Let’s say the object is located at the position vector (x,y) and the

mouse at (mouseX,mouseY).

In Figure 1.15, you see that the vector (dx,dy)

can be calculated by subtracting the object’s

position from the mouse’s position.

• dx = mouseX - x

• dy = mouseY - y

Let’s rewrite the above using p5.Vector
syntax. Assuming I'm writing this code inside Mover class and thus have access to the object’s

position, I then have:

I now have a vector dir that points from the mover’s position all the way to the mouse. If the

object were to actually accelerate using that vector, it would appear instantaneously at the

mouse position. This does not make for a smooth animation, of course. The next step

therefore is to decide how quickly that object should accelerate toward the mouse.

In order to set the magnitude (whatever it may be) of the acceleration vector, I must first _ that

direction vector. That’s right, you said it. Normalize. If I can shrink the vector down to its unit

vector (of length one) then I can easily scale it to any value. One multiplied by anything equals

anything.

Figure 1.14

Figure 1.15

let mouse = createVector(mouseX, mouseY);

Look! I’m using the static reference to sub()

because I want a new p5.Vector pointing from

one point to another.

let dir = p5.Vector.sub(mouse, position);

Any number!let anything = _________;
dir.normalize();
dir.mult(anything);

The Nature of Code (v2.0)

58

To summarize, take the following steps:

1. Calculate a vector that points from the object to the target position (mouse).

2. Normalize that vector (reducing its length to 1).

3. Scale that vector to an appropriate value (by multiplying it by some value).

4. Assign that vector to acceleration.

I have a confession to make. This is such a common operation (normalization then scaling)

that p5.Vector includes a method to do just that—set the magnitude of a vector to a value.

That function is setMag().

In this last example, to emphasize the math, I'm going to write the code with both steps

separate, but this is likely the last time I‘ll do that and you‘ll see setMag() in examples

going forward.

Example 1.10: Accelerating towards the mouseExample 1.10: Accelerating towards the mouse

let anything = ?????
dir.setMag(anything);

update() {

let mouse = createVector(mouseX, mouseY);

Step 1: Compute directionlet dir = p5.Vector.sub(mouse, position);

Step 2: Normalizedir.normalize();

Step 3: Scaledir.mult(0.5);

Step 4: Acceleratethis.acceleration = dir;

Chapter 1. Vectors

59

You may be wondering why the circle doesn’t stop when it reaches the target. It’s important to

note that the object moving has no knowledge about trying to stop at a destination; it only

knows where the destination is and tries to go accelerate there at a fixed rate regardless of

how far away it is. This means it will inevitably overshoot the target and have to turn around,

again accelerating towards the destination, overshooting it again, and so on and so forth. Stay

tuned; in later chapters I’ll show you how to program an object to arrive at a target (slow down

on approach).

This example is remarkably close to the concept of gravitational attraction (in which the object

is attracted to the mouse position). Gravitational attraction will be covered in more detail in

the next chapter. However, one thing missing in this example is calculating the magnitude of

acclerartion which in gravity's case is inversely proportional to distance. In other words, the

closer the object is to the mouse, the faster it accelerates.

Exercise 1.8Exercise 1.8

Try implementing the above example with a variable magnitude of acceleration,

stronger when it is either closer or farther away.

Let’s see what this example would look like with an array of movers (rather than just one).

Example 1.11: Array of movers accelerating towards the mouseExample 1.11: Array of movers accelerating towards the mouse

this.velocity.add(this.acceleration);
this.velocity.limit(this.topspeed);
this.position.add(this.velocity);

}

An array of objectslet movers = [];

The Nature of Code (v2.0)

60

function setup() {
createCanvas(640, 360);
background(255);
for (let i = 0; i < 20; i++) {

Initialize each object in the array.movers[i] = new Mover();

}
}

function draw() {
background(255);

for (int i = 0; i < movers.length; i++) {

Calling functions on all the objects in the arraymovers[i].update();
movers[i].display();

}

}

class Mover {

constructor() {
this.position = createVector(random(width), random(height));
this.velocity = createVector();
this.acceleration = createVector();
this.topspeed = 5;

}

update() {
Algorithm for calculating acceleration:

Find the vector pointing towards the mouse.let mouse = createVector(mouseX, mouseY);
let dir = p5.Vector.sub(mouse,

this.position);

Normalize.dir.normalize();

Scale.dir.mult(0.5);

Set to acceleration.this.acceleration = dir;

Motion 101! Velocity changes by acceleration.

position changes by velocity.

this.velocity.add(this.acceleration);
this.velocity.limit(this.topspeed);
this.position.add(this.velocity);

}

Display the Moverdisplay() {
stroke(0);
fill(175);
ellipse(this.position.x, this.position.y,

16, 16);
}

Chapter 1. Vectors

61

Figure 1.16: The Ecosystem Project

What to do at the edgescheckEdges() {
if (this.position.x > width) {
this.position.x = 0;

} else if (this.position.x > 0) {
this.position.x = width;

}

if (this.position.y > height) {
this.position.y = 0;

} else if (this.position.y < 0) {
this.position.y = height;

}
}

}

The Nature of Code (v2.0)

62

The Ecosystem ProjectThe Ecosystem Project

As mentioned in the preface, one way to use this book is to build a single project
over the course of reading it, incorporating elements from each chapter one at a
time. One idea for this is a simulation of an ecosystem. Imagine a population of
computational creatures swimming around a digital pond, interacting with each
other according to various rules.

Step 1 Exercise:

Develop a set of rules for simulating the real-world behavior of a creature, such as

a nervous fly, swimming fish, hopping bunny, slithering snake, etc. Can you control

the object’s motion by only manipulating the acceleration vector? Try to give the

creature a personality through its behavior (rather than through its visual design,

although that is of course worth exploring as well).

Chapter 1. Vectors

63

	Welcome
	(Amazon.com coming soon)

	The Nature of Code
	Dedication
	Acknowledgments
	A.1 A little bit of history
	A.2 Kickstarter

	Preface
	P.1 What is this book?
	P.2 A word about p5.js
	P.3 What do you need to know?
	P.4 What are you using to read this book?
	P.5 The “story” of this book
	Part I: Inanimate objects
	Part II: It’s alive!
	Part III: Intelligence
	P.6 This book as a syllabus
	P.7 The Ecosystem Project
	P.8 Where do I find the code online and submit feedback?

	Table of Contents
	Introduction
	I.1 Random Walks
	I.2 The Random Walker Class
	Code formatting
	Example I.1: Traditional random walk
	Example I.2: Random number distribution

	Pseudo-Random Numbers
	Exercise I.1

	I.3 Probability and Non-Uniform Distributions
	Exercise I.2
	Example I.3: Walker that tends to move to the right
	Exercise I.3

	I.4 A Normal Distribution of Random Numbers
	Calculating Mean and Standard Deviation
	Example I.4: Gaussian distribution
	Exercise I.4
	Exercise I.5

	I.5 A Custom Distribution of Random Numbers
	Example I.5: Accept-Reject distribution
	Exercise I.6

	I.6 Perlin Noise (A Smoother Approach)
	Noise Detail
	Mapping Noise
	Example I.6: Perlin noise walker
	Exercise I.7

	Two-Dimensional Noise
	Example I.7: 2D Perlin noise
	Exercise I.8
	Exercise I.9
	Exercise I.10

	I.7 Onward

	Chapter 1. Vectors
	1.1 Vectors, You Complete Me
	Example 1.1: Bouncing ball with no vectors

	1.2 Vectors for p5.js Programmers
	1.3 Vector Addition
	Basic Number Properties with Vectors
	Example 1.2: Bouncing ball with vectors!
	Exercise 1.1
	Exercise 1.2
	Exercise 1.3

	1.4 More Vector Math
	Vector subtraction
	Example 1.3: Vector subtraction

	Vector multiplication
	Example 1.4: Multiplying a vector

	More Number Properties with Vectors
	1.5 Vector Magnitude
	Example 1.5: Vector magnitude

	1.6 Normalizing Vectors
	Example 1.6: Normalizing a vector

	1.7 Vector Motion: Velocity
	Example 1.7: Motion 101 (velocity)

	1.8 Vector Motion: Acceleration
	Acceleration Algorithms!
	Exercise 1.4
	Example 1.8: Motion 101 (velocity and constant acceleration)
	Exercise 1.5
	Example 1.9: Motion 101 (velocity and random acceleration)
	Exercise 1.6

	1.9 Static vs. Non-Static Functions
	Exercise 1.7

	1.10 Interactivity with Acceleration
	Example 1.10: Accelerating towards the mouse
	Exercise 1.8
	Example 1.11: Array of movers accelerating towards the mouse

	The Ecosystem Project

	Chapter 2. Forces
	2.1 Forces and Newton’s Laws of Motion
	Newton’s First Law
	Newton’s Third Law
	Newton’s Third Law (as seen through the eyes of p5)

	2.2 Forces and p5—Newton’s Second Law as a Function
	Newton’s Second Law

	Weight vs. Mass
	2.3 Force Accumulation
	Exercise 2.1

	2.4 Dealing with Mass
	Units of Measurement
	Exercise 2.2

	2.5 Creating Forces
	Example 2.1: Forces
	Example 2.2: Forces acting on many objects
	Exercise 2.3

	2.6 Gravity on Earth and Modeling a Force
	Example 2.3: Gravity scaled by mass

	Dealing with formulae
	2.7 Friction
	Example 2.4: Including friction
	Exercise 2.4

	2.8 Air and Fluid Resistance
	Example 2.5: Fluid Resistance
	Exercise 2.5
	Exercise 2.6
	Exercise 2.7

	2.9 Gravitational Attraction
	Example 2.6: Attraction
	Example 2.7: Attraction with many Movers
	Exercise 2.8
	Exercise 2.9

	2.10 Everything Attracts (or Repels) Everything
	Example 2.8: Mutual attraction
	Exercise 2.10

	The Ecosystem Project

	Chapter 3. Oscillation
	3.1 Angles
	What is PI?
	Exercise 3.1

	3.2 Angular Motion
	Example 3.1: Angular motion using rotate()
	Example 3.2: Forces with (arbitrary) angular motion
	Exercise 3.2

	3.3 Trigonometry
	3.4 Pointing in the Direction of Movement
	Example 3.3: Pointing in the direction of motion
	Exercise 3.3

	3.5 Polar vs. Cartesian Coordinates
	Example 3.4: Polar to Cartesian
	Exercise 3.4
	Exercise 3.5

	3.6 Oscillation Amplitude and Period
	Example 3.5: Simple Harmonic Motion
	Exercise 3.6

	3.7 Oscillation with Angular Velocity
	Example 3.6: Simple Harmonic Motion II
	Example 3.7: Oscillator objects
	Exercise 3.7
	Exercise 3.8

	3.8 Waves
	Example 3.8: Static wave drawn as a continuous line
	Example 3.9: The Wave
	Exercise 3.9
	Exercise 3.10
	Exercise 3.11

	3.9 Trigonometry and Forces: The Pendulum
	Example 3.10: Swinging pendulum
	Exercise 3.12
	Exercise 3.13
	Exercise 3.14

	3.10 Spring Forces
	Example 3.11: A Spring connection
	Exercise 3.15
	Exercise 3.16

	The Ecosystem Project

	Chapter 4. Particle Systems
	4.1 Why We Need Particle Systems
	4.2 A Single Particle
	Example 4.1: A single particle
	Exercise 4.1
	Exercise 4.2

	4.3 The Array
	Example 4.2: Array of particles

	4.4 The Particle System Class
	Example 4.3: Simple Single Particle System
	Exercise 4.3
	Exercise 4.4

	4.5 A System of Systems
	Example 4.4: System of systems
	Exercise 4.5
	Exercise 4.6

	4.6 Inheritance and Polymorphism: An Introduction
	4.7 Inheritance Basics
	4.8 Particles with Inheritance
	Exercise 4.7

	4.10 Particle Systems with Inheritance
	Example 4.5: Particle system inheritance
	Exercise 4.8

	4.11 Particle Systems with Forces
	Example 4.6: Particle system with forces

	4.12 Particle Systems with Repellers
	Example 4.7: ParticleSystem with repeller
	Exercise 4.9
	Exercise 4.10

	4.13 Image Textures and Additive Blending
	Example 4.8: Image texture particle system
	Exercise 4.11
	Exercise 4.12
	Example 4.9: Additive blending
	Exercise 4.13
	Exercise 4.14

	The Ecosystem Project

	Chapter 6. Autonomous Agents
	6.1 Forces from Within
	6.2 Vehicles and Steering
	Why Vehicle?
	6.3 The Steering Force
	Example 6.1: Seeking a target
	Exercise 6.1
	Exercise 6.2
	Exercise 6.3

	6.4 Arriving Behavior
	Example 6.2: Arrive steering behavior

	6.5 Your Own Desires: Desired Velocity
	Exercise 6.4
	Example 6.3: “Stay within walls” steering behavior
	Exercise 6.5

	6.6 Flow Fields
	Exercise 6.6
	Example 6.4: Flow field following
	Exercise 6.7
	Exercise 6.8

	6.7 The Dot Product
	Exercise 6.9

	6.8 Path Following
	Example 6.5: Simple path following

	6.9 Path Following with Multiple Segments
	Example 6.6: Path following
	Exercise 6.10
	Exercise 6.11

	6.10 Complex Systems
	6.11 Group Behaviors (or: Let’s not run into each other)
	Example 6.7: Group behavior: Separation
	Exercise 6.12
	Exercise 6.13

	6.12 Combinations
	Example 6.8: Combining steering behaviors: Seek and separate
	Exercise 6.14

	6.13 Flocking
	Exercise 6.15
	Example 6.9: Flocking
	Exercise 6.16
	Exercise 6.17
	Exercise 6.18
	Exercise 6.19

	6.14 Algorithmic Efficiency (or: Why does my $@(*%! run so slowly?)
	Example 6.10: Bin-lattice spatial subdivision

	6.15 A Few Last Notes: Optimization Tricks
	1) Magnitude squared (or sometimes distance squared)
	2) Sine and cosine lookup tables
	3) Making gajillions of unnecessary p5.Vector objects
	Exercise 6.20
	Exercise 6.21

	The Ecosystem Project

	Chapter 7. Cellular Automata
	7.1 What Is a Cellular Automaton?
	7.2 Elementary Cellular Automata
	7.3 How to Program an Elementary CA
	7.4 Drawing an Elementary CA
	Example 7.1: Wolfram elementary cellular automata
	Exercise 7.1
	Exercise 7.2
	Exercise 7.3
	Exercise 7.4

	7.5 Wolfram Classification
	Exercise 7.5

	7.6 The Game of Life
	7.7 Programming the Game of Life
	Example 7.2: Game of Life
	Exercise 7.6
	Exercise 7.7
	Exercise 7.8

	7.8 Object-Oriented Cells
	Example 7.3: Game of Life OOP

	7.9 Variations of Traditional CA
	Exercise 7.9
	Exercise 7.10
	Exercise 7.11
	Exercise 7.12
	Exercise 7.13
	Exercise 7.14
	Exercise 7.15

	The Ecosystem Project

	Chapter 8. Fractals
	8.1 What Is a Fractal?
	8.2 Recursion
	Example 8.1: Recursive Circles I
	Example 8.2: Recursion twice
	Example 8.3: Recursion four times

	8.3 The Cantor Set with a Recursive Function
	Example 8.4: Cantor set
	Exercise 8.1

	8.4 The Koch Curve
	The “Monster” Curve
	Example 8.5: Koch curve
	Exercise 8.2
	Exercise 8.3
	Exercise 8.4
	Exercise 8.5

	8.5 Trees
	Example 8.6: Recursive tree
	Exercise 8.6
	Example 8.7: Recursive tree
	Exercise 8.7
	Exercise 8.8
	Exercise 8.9
	Example 8.8: Stochastic tree
	Exercise 8.10
	Exercise 8.11

	8.6 L-systems
	Example 8.9: Simple L-system sentence generation
	Example 8.10: LSystem
	Exercise 8.12
	Exercise 8.13
	Exercise 8.14

	The Ecosystem Project

	Chapter 9. The Evolution of Code
	9.1 Genetic Algorithms: Inspired by Actual Events
	9.2 Why Use Genetic Algorithms?
	Exercise 9.1

	9.3 Darwinian Natural Selection
	9.4 The Genetic Algorithm, Part I: Creating a Population
	9.5 The Genetic Algorithm, Part II: Selection
	9.6 The Genetic Algorithm, Part III: Reproduction
	9.7 Code for Creating the Population
	Step 1: Initialize Population
	Step 2: Selection
	Exercise 9.2
	Exercise 9.3

	Step 3: Reproduction
	Exercise 9.4
	Exercise 9.5

	9.8 Genetic Algorithms: Putting It All Together
	Example 9.1: Genetic algorithm: Evolving Shakespeare
	Exercise 9.6

	9.9 Genetic Algorithms: Make Them Your Own
	Key #1: Varying the variables
	Key #2: The fitness function
	Exercise 9.7

	Key #3: Genotype and Phenotype

	9.10 Evolving Forces: Smart Rockets
	9.11 Smart Rockets: Putting It All Together
	Example 9.2: Simple Smart Rockets
	Example 9.3: Smart Rockets
	Exercise 9.8
	Exercise 9.9
	Exercise 9.10
	Exercise 9.11
	Exercise 9.12

	9.12 Interactive Selection
	Example 9.4: Interactive selection
	Exercise 9.14

	9.13 Ecosystem Simulation
	Genotype and Phenotype
	Selection and Reproduction
	Example 9.5: Evolution ecosystem

	The Ecosystem Project

	Chapter 10. Neural Networks
	10.1 Artificial Neural Networks: Introduction and Application
	10.2 The Perceptron
	10.3 Simple Pattern Recognition Using a Perceptron
	10.4 Coding the Perceptron
	Example 10.1: The Perceptron
	Exercise 10.1
	Exercise 10.2

	10.5 A Steering Perceptron
	Example 10.2: Perceptron steering
	Exercise 10.3
	Exercise 10.4

	10.6 It’s a “Network,” Remember?
	10.7 Neural Network Diagrams
	Example 10.3: Neural network diagram

	10.8 Animating Feed Forward
	Example 10.4: Animating a neural network diagram
	Exercise 10.5
	Exercise 10.6
	Exercise 10.7

	The Ecosystem Project
	The end

	Further Reading
	Books
	Papers and Articles

